Айниятро исбот намоед: \(\cos{\alpha}+\sin{\alpha}+\cos{3\alpha}+\sin{3\alpha}=2\sqrt{2}\cos{\alpha}\sin{(\frac{\pi}{4}+2\alpha)}\)
- Информация о материале
- Автор: Раҳимҷон Ҳакимов
- Категория: Тригонометрия
- Просмотров: 701
Айниятро исбот намоед:
\(\cos{\alpha}+\sin{\alpha}+\cos{3\alpha}+\sin{3\alpha}=2\sqrt{2}\cos{\alpha}\sin{(\frac{\pi}{4}+2\alpha)}\)
A\( = \cos{\alpha}+\sin{\alpha}+\cos{3\alpha}+\sin{3\alpha}\)
\(\cos{\alpha}+\cos{3\alpha}=2\cos{\frac{\alpha+3\alpha}{2}}\cos{\frac{\alpha-3\alpha}{2}=}\)
\(=2\cos{2\alpha}\cos{\alpha}\)
\(\sin{\alpha}+\sin{3\alpha}=2\sin{\frac{\alpha+3\alpha}{2}}\cos{\frac{\alpha-3\alpha}{2}=}\)
\(=2\sin{2\alpha}\cos{\alpha}\)
A\( = 2\cos{2\alpha}\cos{\alpha}+2\sin{2\alpha}\cos{\alpha}=2\cos{\alpha}(\cos{2\alpha}+\sin{2\alpha})\)
\(\cos{2\alpha}+\sin{2\alpha}=\sqrt{2}(\frac{\sqrt{2}}{2}\cos{2\alpha}+\frac{\sqrt{2}}{2}\sin{2\alpha})\)
\(\frac{\sqrt{2}}{2}\cos{2\alpha}+\frac{\sqrt{2}}{2}\sin{2\alpha}=\sin{\frac{\pi}{4}}\cos{2\alpha}+\cos{\frac{\pi}{4}}\sin{2\alpha}=\)
\(=\sin{(\frac{\pi}{4}+2\alpha)}\)
\(\cos{2\alpha}+\sin{2\alpha}=\sqrt{2}\sin{(\frac{\pi}{4}+2\alpha)}\)
A\(=2\cos{\alpha}\cdot\sqrt{2}\sin{(\frac{\pi}{4}+2\alpha)}=\)
\(=2\sqrt{2}\cos{\alpha}\sin{(\frac{\pi}{4}+2\alpha)}\)
\(\cos{\alpha}+\sin{\alpha}+\cos{3\alpha}+\sin{3\alpha}=2\sqrt{2}\cos{\alpha}\sin{(\frac{\pi}{4}+2\alpha)}\)
Айният исбот шуд.
- Таҳқиқи функсияи \(y = \frac{x^3-1}{4x^2}\)
- Таҳқиқи функсияи \(y = \ln{\frac{x+1}{x+2}}\)
- Таҳқиқи функсияи \(y = \frac{e^x}{x}\)
- Таҳқиқи функсияи \(y = -\frac{1}{4}(x^3-3x^2+4)\)
- Соҳаи муайянии функсияи \(y = \frac{x^2}{1+x}\)
- Соҳаи муайянии функсияи \(y = \sqrt{\cos x^2}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n-1}{n^2} \right)\)
- Соҳаи муайянии функсияи \(y = \sqrt{\sin\left(\sqrt{x}\right)}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\frac{1 + a + a^2 + ... + a^n}{1 + b + b^2 + ... + b^n}\)
- Соҳаи муайянии функсияи \(y = \log(x+2) + \log(x-2)\)